Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-2077027

ABSTRACT

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Subject(s)
COVID-19 Drug Treatment , Lipolysis , Orthomyxoviridae Infections , Animals , Humans , Mice , Antiviral Agents/pharmacology , Cytokines , Fatty Acids, Nonesterified , Influenza A virus , Lipase , Membrane Transport Proteins , RNA , SARS-CoV-2 , Orthomyxoviridae Infections/drug therapy
2.
Indoor Air ; 32(1): e12959, 2022 01.
Article in English | MEDLINE | ID: covidwho-1528381

ABSTRACT

Despite the prolonged global spread of COVID-19, few studies have investigated the environmental influence on the spread of SARS-CoV-2 RNA with a metropolitan scale, particularly the detection of SARS-CoV-2 after disinfection at multi-use facilities. Between February 2020 and January 2021, 1,769 indoor air samples and object surfaces were tested at 231 multi-use facilities where confirmed cases were known to have occurred in Seoul, to determine whether SARS-CoV-2 RNA could be detected even after disinfection. Samples were collected by air scanner and swab pipette and detected by real-time RT-PCR. As a result, 10 (0.56%) positive samples were detected despite disinfection. The common environmental features of all 10 were surfaces that contained moisture and windowless buildings. With the aim of preventing the spread of COVID-19, from January to February 2021, we next conducted 643 preemptive tests before the outbreak of infections at 22 multi-use facilities where cluster infections were frequent. From these preemptive inspections, we obtained five (0.78%) positive results from two facilities, which enabled us to disinfect the buildings and give all the users a COVID-19 test. Based on the study purpose of finding and investigating cases of positive detection even after disinfection in the field through long-term environmental detection in a large city, our preemptive investigation results helped to prevent the spread of infectious diseases by confirming the potential existence of an asymptomatic patient.


Subject(s)
Air Microbiology , Air Pollution, Indoor , COVID-19 , COVID-19/prevention & control , COVID-19/transmission , Humans , SARS-CoV-2 , Seoul/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL